

CCD3 Array Controller

Technical Manual Rev. 0.1

INTRODUCTION 2
Nomenclature 2
Disclaimer 2

REQUIREMENTS AND DEPENDENCIES 3
Hardware 3
Software 3
Recommended utilities 3

INSTALLATION 4
File locations 4
Permissions 5

CONFIGURATION 6
ccd3comm.conf 6

ARCHITECTURE 9
Kernel module 9
Character channel 9
Data channel 9
Concurrency 9

INTERFACING 10
Command line 10
Ivy bus 10
External scripting 12

COMMUNICATION STRUCTURE 13
Commands, requests, replies 13

CONTROLLER DIRECT COMMANDS 15
Exposure control 15
Readout format 16
Readout timing 17
Gain and offset 17
Bias voltage 17
Miscellaneous 18

APPLICATION COMMANDS 19
COMMAND LINE OPTIONS 20
CCD3COMM 20
CCD3DB 20

EXAMPLE BATCH FILE 21
GENERATING BATCH FILES IN SHELL SCRIPTS 22
LIST OF TABLES 24

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 2 of 24

Introduction
This document describes the low-level command interface of the Niels Bohr Institute
CCD3, a 3rd generation CCD array controller and associated software package. The
document is intended as a working reference for systems integrators and engineers
working with integration, interfacing and commissioning.

The reader is assumed to have a sound knowledge of the internal workings of the CCD3
camera system and charge coupled detector technology in general terms.

For introduction, general information or system description, the reader is referred to the
documentation available on http://ccd3.not.iac.es/controller/

Nomenclature
Examples or text referring to actual screen display are showed in courier font face.

Sections marked with a grey color are topics currently under development, planned for
future releases or designated exclusively for development or debugging purposes. They
should therefore not be relied on in actual implementation and/or are not for use in
production environments.

Disclaimer
The Niels Bohr Institute is committed to continuously supply state of the art CCD camera
technology. As such, the CCD3 array controller and associated software are subject to a
continuing development effort. Therefore, as a work in progress, all information disclosed
here is by definition subject to change, but should be backward compatible.

For latest version of this document, please refer to the online document repository at
http://ccd3.not.iac.es

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 3 of 24

Requirements and dependencies
In general, the CCD3 Array Controller system delivery includes a suitable control and
acquisition computer, which is configured to customer specifications and tested according
to the agreed performance. If for some reason the software needs to be reinstalled or the
hardware replaced, please refer to this chapter for details.

The control and acquisition software may possibly also function satisfactorily in less
powerful configurations, but this has not been verified and is not supported.

Hardware
• Intel x86-64 based CPU. Multicore versions1 are recommended; the acquisition

software scales well on more CPU cores.
• 1 available PCI2 half length expansion slot.

Software
• X86_64 GNU/Linux, kernel 2.6.32-27 or newer. Recommended distribution is

Ubuntu 10.04 Lucid.
• g++-4.4.3
• xpa-2.1.12
• cfitsio v.3.21
• libncurses5-dev
• ivy-c v.3.11.4
• libpcre3-dev v8.10
• libglib2.0-dev
• tcl8.5-dev
• xutils-dev
• libmysqlclient-dev
• kernel-headers matching running kernel
• mysql-server v5.1
• Gnome desktop

Recommended utilities
• phpmyadmin
• Midnight Commander
• SAOImage DS9
• IDL

1 Intel Core i5, i7 especially
2 http://www.pcisig.com/home

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 4 of 24

Installation
The CCD3 Array Controller acquisition software “ccd3comm” and associated modules are
distributed in a compressed tarball “ccd3-X.X.XX.tar.gz”. The files are extracted using a
command like: tar xvzf ccd3-X.X.XX.tar.gz. Suggested location of the source files is
/usr/src.

As per de facto GNU/Linux standard, the build procedure is started with the command
make all, which will compile and install all required modules; likewise, the install
procedure, which should be executed with administrative privileges, is started with:
sudo make install.

File locations
The files will be installed in the following locations:

• /usr/local/ccd3/*
contains all binaries, configuration files, startup scripts.

• /usr/local/bin/*
symbolic links to binaries.

• /etc/ccd3/*
symbolic links to configuration files.

• /etc/sysctl.d/

symbolic link to kernel configuration file

• /etc/init.d/*
symbolic links to startup scripts

• /lib/modules/[kernel version]/kernel/drivers/ccd3/ccd3.ko
ccd3 kernel module

• /etc/udev/rules.d/ccd3.rules
udev rules for the ccd3 kernel driver

Modified files:

• /etc/modules
ccd3 kernel driver added to module load sequence.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 5 of 24

Permissions
The device files /dev/ccd3ctl and /dev/ccd3 are by default owned by the root user, with
the permissions set as 666, i.e. readable and writable by everyone. If the permissions are
altered, it must be ensured that the user running the ccd3comm module has read and write
permissions to the device files.

All files created by the ccd3comm are owned by the user currently running ccd3comm. All
files used by the ccd3comm, e.g. scripts and batch files, must be readable, and scripts
must be executable.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 6 of 24

Configuration

ccd3comm.conf
The ccd3comm.conf configuration file is an editable text file, specifying general settings for
the ccd3comm module. The application will search for this file in the /etc/ccd3 directory,
but an alternative configuration file can be specified by the “-c” command line switch.

[Application]
; General application settings
Ansi = true Use of ansi codes on/off in terminal.
Uid = root User id when running application as

daemon.
Batchfile = on_start Batch file to be executed upon initialization.
Scriptdir = /etc/ccd3/scripts Location of scripts and batch files.
Mirror_x = false If set, output image will be mirrored across

x-axis.
Mirror_y = false If set, output image will be mirrored across

y-axis.
Rotate = 0 Will rotate output image accordingly; valid

values are 0, 90,180, 270.
[log]
; Specifies log settings
Logfile = syslog Logging destination. Either a file or the

special values “syslog” which will log using
the syslog.

Syslog_ident = ccd3 Source identification when using syslog
logging.

Syslog_facility = LOG_LOCAL5 Facility when using syslog.
[file]
; Contains settings associated with file handling
Combine = false If set, data will be descrambled and

organized into one complete image.
Otherwise each amplifier output is saved
into separate extensions.

Allow_close = false If set, the output file is closed when the data
transfer and processing has been com-
pleted. Otherwise an explicit “fileclose”
command is required to close the file.

Prefix = ccd3_ Prefix prepended to any autogenerated
filenames.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 7 of 24

Autosave = true If set, all image data are saved regardless

of whether a filename has been specified. If
no filename has been specified, the file is
saved to an autogenerated filename.

Namestyle = default Specifies the style of autogenerated
filenames. Valid values are [default, not,
“string”].
Default = [prefix][nnnn].fits, n = continous
counter.
Not = NOT style, see NOT documentation.
“string” = [prefix][string][nnnn].fits, n =
continous counter.

Output_dir = /images Directory for output images.
[detector_layout]
; Specifies physical layout of the detectors, location and orientation
Layout = --:--
Orientation = horizontal
[header_keywords]
; This section contains static keywords written to the main header
; of the .fits file.
ORIGIN = PLEASE SET /etc/ccd3comm.conf Optional but suggested keyword.
OBSERVAT = PLEASE SET /etc/ccd3comm.conf Optional but suggested keyword.
TELESCOP = PLEASE SET /etc/ccd3comm.conf Optional but suggested keyword.
INSTRUME = PLEASE SET /etc/ccd3comm.conf Optional but suggested keyword.
DETNAME = PLEASE SET /etc/ccd3comm.conf Optional but suggested keyword.
COMMENT = PLEASE SET /etc/ccd3comm.conf Optional but suggested keyword.
CREATOR = CCD3COMM Optional but suggested keyword.
[extension_keywords]
; This section contains static keywords written to the extensions headers
; of the .fits file.
BUNIT = count Optional but suggested keyword.
CCDNAME = PLEASE SET /etc/ccd3comm.conf Optional but suggested keyword.
[ivy_message_bus]
; This section specifies how ccd3comm communicates on the ivy message bus3.
name = ccd3comm Ivy identification string, should be unique

on the ivy message bus.
Enable = true Enable/disable ivy message bus

communication.
[ccd3_event] = [ivy_message] General form of ivy message

specification. A few examples are shown
below.

on_start = application.start Sent on application initialization.
on_stop = application.stop Sent on application shutdown.
on_error = application.error Sent on general application error

handling.
on_reset = application.reset Sent on hardware reset.

3 See section section “Ivy bus” for details

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 8 of 24

on_command = con.command Sent on console command.
on_response = con.response Sent on console response.
on_exposure_start = exposure.start Sent on start of exposure.
On_exposure_progress = exposure.progress Sent during exposure.
On_exposure_end = exposure.end Sent on finalization of exposure.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 9 of 24

Architecture
The main interface to the CCD3 controller is a fiber optic cable, connecting the CCD3
controller and PCI interfacing board. The communication is divided in two logical channels:
a character based command channel and a high speed data channel for bulk data.
Command and status are exchanged on the command channel in clear text mode4, while
image data are transmitted from the controller to the acquisition card on the data channel
formatted as 32 bit unsigned integers.

Kernel module

The hardware communication is implemented in a kernel module, performing actual I/O
and presenting a well defined interface to the user mode module(s). The interface is
populated in the device file system, where communication is possible using file read/write
or memory mapping techniques.

 Device files:
 /dev/ccd3ctl
 /dev/ccd3

Character channel
The character channel is implemented on the /dev/ccd3ctl device. Commands can be
issued e.g. using fwrite() and status read by fread(). Protocol is clear text ascii
characters.

Data channel
The data channel is implemented on the /dev/ccd3 device. This is a read-only device
where 32 bit unsigned image data can be read. Any attempt to write to this device will fail,
and results are undefined.

Concurrency
Concurrency is possible, but no means of resource protection or synchronization is
implemented, and responsibility for timing is thus left to the user applications.

4 For protocol information see document http://ccd3.not.iac.es/controller/FE-SW/current_Ctrl_Comm.pdf

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 10 of 24

Interfacing

Command line
Multiple possibilities exist to loop into the command chain. At the user interface level, the
application is constructed as a console program reading from stdin and writing to stdout,
and thus ordinary piping and redirection can be used to communicate from other programs
or shell scripts, e.g.

echo xsiz 1024 | ccd3comm

or if the ccd3comm is run as a daemon, using ivyprobe to send, e.g.

 ivyprobe ‘(.*)’
 ccd3comm.con.command rotate 90

At the driver level, the /dev/ccd3ctl can be utilized for reading status and writing
commands, and the /dev/ccd3 can be used for reading image data.

Examples:

echo @sint >> /dev/ccd3ctl
echo @xsiz

wait for exposure to complete…

cat /dev/ccd3 >> ~/myimage.raw

in order to read out raw non-descrambled and unprocessed image data.

Using this approach there is no mean to monitor the current status of controller. It is
recommended to use the ccd3comm console interactively or alternatively run the
ccd3comm as a daemon and use the ivy bus for controlling the acquisition. These two
modes are also the ones primarily targeted for production systems.

Ivy bus
Comprehensive information regarding runtime state and control is broadcast on the ivy
bus. Selected ivy commands are also available to control the application and controller. In
general, all commands handled by the interpreter are transmitted as:

ccd3comm.con.command [command]

and resulting reply is transmitted as:

ccd3comm.con.reply [reply to command]

The actual ivy message transmitted or received can be customized in the
/etc/ccd3/ccd3comm.conf configuration file. If multiple controllers are running on the same
TCP/IP network, the sender name can be changed in the configuration file in order to not
create conflicts between multiple camera systems.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 11 of 24

Also, it is suggested that the systems integrator investigates to use ivy message bus
communication, using the ivyprobe utility:

ivyprobe ‘(.*)’

for listing all communication, or:

Ivyprobe ‘(ccd3comm.*)’

for listing all communication from the “ccd3comm” node on the ivy network.

Example output from ivyprobe:

root@cam2:~# ivyprobe '(.*)'
Broadcasting on network 127.255.255.255, port 2010
ccd3comm connected from localhost
ccd3comm sent 'ccd3comm.application.start'
ccd3comm sent 'ccd3comm.cam.reply !drv reset'
ccd3comm sent 'ccd3comm.cam.query ?drv sync'
ccd3comm sent 'ccd3comm.cam.reply !drv sync 1'
ccd3comm sent 'ccd3comm.cam.query ?deen'
ccd3comm sent 'ccd3comm.cam.reply !deen 3'
ccd3comm sent 'ccd3comm.cam.query ?xsiz'
ccd3comm sent 'ccd3comm.cam.reply !xsiz 2148'
ccd3comm sent 'ccd3comm.cam.query ?ysiz'
ccd3comm sent 'ccd3comm.cam.reply !ysiz 4102'
ccd3comm sent 'ccd3comm.cam.query ?xbeg'
ccd3comm sent 'ccd3comm.cam.reply !xbeg 1'
ccd3comm sent 'ccd3comm.cam.query ?ybeg'
ccd3comm sent 'ccd3comm.cam.reply !ybeg 1'
ccd3comm sent 'ccd3comm.cam.query ?xbin'
ccd3comm sent 'ccd3comm.cam.query ?xsiz'
ccd3comm sent 'ccd3comm.cam.reply !xbin 1'
ccd3comm sent 'ccd3comm.cam.reply !xsiz 2148'
ccd3comm sent 'ccd3comm.cam.query ?ybin'
ccd3comm sent 'ccd3comm.cam.query ?ysiz'
ccd3comm sent 'ccd3comm.cam.reply !ybin 1'
ccd3comm sent 'ccd3comm.cam.reply !ysiz 4102'
ccd3comm sent 'ccd3comm.cam.query ?time'
ccd3comm sent 'ccd3comm.cam.reply !time 1443'
ccd3comm sent 'ccd3comm.cam.query ?tmpw'
ccd3comm sent 'ccd3comm.cam.reply !tmpw 30.00'
ccd3comm sent 'ccd3comm.cam.query ?tmpa'
ccd3comm sent 'ccd3comm.cam.reply !tmpa 0.00'
ccd3comm sent 'ccd3comm.cam.query ?tmpl'
ccd3comm sent 'ccd3comm.cam.reply !tmpl 0.00'
ccd3comm sent 'ccd3comm.cam.query ?pres'
ccd3comm sent 'ccd3comm.cam.reply !pres 0.00e+00'
ccd3comm sent 'ccd3comm.cam.query ?shut'
ccd3comm sent 'ccd3comm.cam.reply !shut 1'
ccd3comm sent 'ccd3comm.cam.query ?stat'
ccd3comm sent 'ccd3comm.cam.reply !stat 4'
ccd3comm sent 'ccd3comm.cam.query ?rexp'
ccd3comm sent 'ccd3comm.cam.reply !rexp 1'
ccd3comm sent 'ccd3comm.cam.query ?deav'
ccd3comm sent 'ccd3comm.cam.reply !deav 3'

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 12 of 24

External scripting
Customized scripts and batch files should be located in the /etc/ccd3/scripts/ directory, or
according to the script directory setting in the /etc/ccd3/ccd3comm.conf configuration file.

For any commands that are not prefixed by a ‘@’ or ‘?’ character and are not contained in
the set of defined application commands, the ccd3comm application searches through the
defined script directory for files of that specific name. If a file is found and readable, it is
considered a script or batch file.

The application determines the type of file by examining the content of the file. A script file
will always start with a sequence like “#!/bin/bash” - specifying the system interpreter -
and if this sequence is present, the file is passed to a shell and executed. Otherwise the
file is considered a batch file, and the content will be executed by the ccd3comm
command interpreter, as if the commands were typed directly at the console prompt.

Batch files are ordinary text files containing any command that would be valid on the
ccd3comm console command line. The file should be readable, but not executable. For an
example of a batch file, refer to page 21, section “Example batchfile”.

Script files are shell scripts, which can be executed by the shell available on the current
system. Script files should be readable and executable. For an example of a script file,
refer to page 22, section “Generating batch files in shell scripts”.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 13 of 24

Communication structure
The CCD3 Array controller system comprises the CCD controller, interfacing to the
detector, an optical fiber based communication network and an acquisition application
running on a X86_64 GNU/Linux compatible operating system.

Commands, requests, replies
The camera can be controlled by issuing text commands on the logical text channel of the
network, and status information can be obtained in a similar manner. The communication
is connection oriented, in the sense that a command or question is always followed by a
reply from the camera. The general format is structured as per Table 1.

Table 1 Controller communication structure
Function Description
@[token] {arg 1 [.. arg n]} A controller command is preceded by the ‘@’ character

(ascii 64) and terminated by either a CR (ascii 13) or LF
character (ascii 10).

A command may be followed by one or more arguments,
specific for the command.

The controller is requested to perform some specific
action and reply with a “!token” answer, possibly
containing one or more arguments e.g. indicating a state
or scalar value.

Example setting the horizontal dimension of the image
geometry:
@xsiz 1024
!xsiz 1024

?[token] A controller question is preceded by the ‘?’ character (ascii
63) and terminated by either a CR (ascii 13) or LF
character (ascii 10).

The controller is requested to reply with a “!token” answer,
indicating the result of the query.

Exampling requesting the horizontal dimension of the
image geometry:
?xsiz
!xsiz 1024

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 14 of 24

![token] [arg] A controller reply is preceded by the ‘!’ character (ascii

33) and terminated by either a CR (ascii 13) or LF
character (ascii 10).

The reply may be followed by one or more arguments
indicating the result or a state.

#[token] {on [period]| off} Status solicitation commands are preceded by the ‘#’
character (ascii 35) and terminated by either a CR (ascii
13) or LF character (ascii 10).

The command may be followed by an “on” keyword,
turning solicitation mode on, or an “off” keyword, turning
solicitation mode off.

The “on” argument may be followed by an optional period
specified in milliseconds, by which the status is repeated.
If no period is specified, the status message is repeated
every 1000 millisecond. Upon a change in state, the status
is also repeated.

Direct commands or queries for the controller, prepended by a ‘@’ or ‘?’ character, are
piped directly to the controller via the communication network text channel and
subsequently interpreted and processed by the CCD3 controller. All other commands are
handled by the command interpreter of the acquisition application. An application
command may or may not result in one or more direct controller commands, e.g. issuing
an “exposure” command will open a file, query the controller for the current metrics and
generate a “sint” command for the CCD3 controller. Issuing a “file [filename]”
command will store the filename internal to the application, but no controller
communication will occur as a result of the command.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 15 of 24

Controller Direct Commands
Direct commands are command given directly to the controller i.e. not interpreted by the
user application. Commands given to the controller are case insensitive.

Exposure control (all times in msecs)

Table 2 Exposure control

Command Request Reply Description
@sint - !sint Start integration. Internal command; can’t be

issued directly – DON’T USE.
@time n ?time !time %8d Initial integration time in msec (n>1)
@timr n ?timr !timr %8d Residual exposure time in msecs (n>1)
- ?tima !tima %8d Actual elapsed time in msec.
@timw n - !timw %8d new total wanted time in msec (n>1)
@sdly n ?sdly !sdly %8d Shutter delay in msec (n>1)
- ?stat !stat %5d status[31..16] : all zeroes

status[15..08] : status from ctrl-sequencer
status[07..00] : status from ctrl-program

[0] : sequencer start/stop
[1] : -
[2] : shutter enable
[3] : reset sequencer
[8] : sequencer prompts for a start timing
[9] : sequencer prompts for a PSU-sync
[14,12]=0 idle
[14,12]=1 integrating
[14,12]=2 readout
[14,12]=3 clear
[14,12]=4 shutter delay

@imod n,m ?imod n !imod %1d %1d Integration mode:
n=0 => shutter
n=1 => clear before exposure
n=2 => readout after exposure
m=0 => off; m=1 => on;

@brek !brek Hard break of integration or readout: Abort
integration and/or readout without any saving and
closes shutter.
If the integration is to be terminated with a normal
file save, use the timr or timw commands.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 16 of 24

Readout format

5 As of writing, windowing is supported only in read 1 mode (left readout)

6 Please note that the geometric settings (eg. xsiz, ysiz), is handled on a per detector base.

Command Request Reply Action
@fres - !fres Format reset :

xtot and ytot to hard-programmed values
xsiz=xtot; ysix=ytot (no windowing)
xbeg=ybeg=xbin=ybin=1 (no binning)

@xtot n ?xtot !xtot%5d Total x size (for engineering only)
@ytot n ?ytot !ytot%5d Total y size (for engineering only)
@xsiz n ?xsiz !xsiz%5d x size for window
@ysiz n ?ysiz !ysiz%5d y size for window
@xbeg n ?xbeg !xbeg%5d x coordinate of lower left corner of window

(First pixel is 1)
@ybeg n ?ybeg !ybeg%5d y coordinate of lower left corner of window

(First pixel is 1)
@xbin n ?xbin !xbin=%4d,

Tpix=%4d =>
%4dkpix/s

x binning
Recalculates:
xsiz = (xsiz*xbin_old) div xbin_new;

@ybin n ?ybin !ybin%4d y binning, recalculates:
ysiz = (ysiz*ybin_old) div ybin_new;

@rden m,n ?rden [m] !rden %1d %1d Readout amplifier control5; 0: Off, 1: Left; 2: Right, 3:
Dual. This command is handled on a per detector
basis, e.g. set dual amplifiers on detector zero:
@read 0 3

- ?reav [m] !reav %1d Number of available readout amplifiers on detector
number m

- ?deav !deav %1d Number of available detectors
@deen n ?deen !deen %1d Number of enabled detectors6

Table 3 Readout format

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 17 of 24

Readout timing

Gain and offset

Bias voltage

Command Request Reply Action
@tsam n ?tsam !tsam %4d,Tpix=%4d =>

%4dkpix/s
Clamp and sample times in
clocks

@tspw n ?tspw !tspw %4d,Tpix=%4d =>
%4dkpix/s

Serial pulse width in clocks

@tsol n ?tsol !tsol %4d,Tpix=%4d =>
%4dkpix/s

Serial pulse overlap in clocks

@tsnd n ?tsnd !tsnd %4d,Tpix=%4d =>
%4dkpix/s

Serial neutral delay in clocks

@tstr n ?tstr !tstr %4d,Tpix=%4d =>
%4dkpix/s

Serial rise/fall times in clocks

@tres - !tres %4d, Tpix=%4d =>
%4dkpix/s

Reset all timing

Table 4 Readout timing

Table 5 Gain and offset

Command Request Reply Action
@gain n m ?gain n !gain %2d %7.3f Individual Digital gain m in channel n
@zero n m ?zero n !zero %2d %8d Digital zero m in channel n
@offs n m ?offs n !offs %2d %7.0f Analog offset m in channel n
@cdsg n ?cdsg !cdsg %8d Fundamental cds-gain (n is integer)

Command Request Reply Action
@vbha n m ?vbha n !vbha %2d %7.3f Set HA high voltage channel n to m volts

5.0<=m<=24.0; Usually used for OD *1
@vbhb n m ?vbhb n !vbhb %2d %7.3f Set HB high voltage channel n to m volts

5.0<=m<=24.0; Usually used for RD *1
@vbhc n m ?vbhc n !vbhc %2d %7.3f Set HC high voltage channel n to m volts

5.0<=m<=24.0; *1
@vbla n m ?vbla n !vbla %2d %7.3f Set LA low voltage channel n to m volts

-4.0<=m<=+4.0; Usually used for OG1 *1
@vblb n m ?vblb n !vblb %2d %7.3f Set LB low voltage channel n to m volts

-4.0<=m<=+4.0; Usually used for OG2 *1
@vbod n m ?vbod n !vbha %2d %7.3f Same as vbha (for backward compatibility)
@vbrd n m ?vbrd n !vbhb %2d %7.3f Same as vbhb (for backward compatibility)
@vbdx n m ?vbdx n !vbhc %2d %7.3f Same as vbhc (for backward compatibility)
@vbog n m ?vbog n !vbla %2d %7.3f Same as vbla (for backward compatibility)
@vbgx n m ?vbgx n !vblb %2d %7.3f Same as vblb (for backward compatibility)

Table 6 Bias voltage

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 18 of 24

Miscellaneous

Command Request Reply Description
@rest - !rest Reset OptoRing
- ?pixc !pixc %8d %8d Pixel counter (for test purpose)

new_pixcnt,(new_pixcnt-old_pixcnt)
 ?temp n

Table 7 Miscellaneous

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 19 of 24

Application Commands
Command Description
cam [n] Select camera device indexed by n, n = [1-8].
file [filename] Set output file to [filename]. The filename is reset after a

successful data offload sequence. The filename needs to be a
valid UNIX filesystem name.

If a value of “auto” isset, the filename will be auto-generated
according to the namestyle setting in the configuration file.

If [filename] is omitted a currently open file is closed. If no files
are open, the command is ignored.

show [n] Show image saved at position [n], where n needs to be a
previously allocated and stored image.

eval [expression] Perform calculation given by [expression]. Syntax TBD.
v | verbose [n] Set application verbosity to level [n], where 0 = less informative

and 4 = debugging information.
Reset Reset hardware, buffers and internal states.
clear Clear the console.
expose Initiate image integration and readout.
abort Abort current integration and/or transfer.
xpaset [arg] Set xpa command [arg] to DS9 preview display. Not valid when

preview is not enabled.
xpaget [arg] Get xpa response from DS9 preview display. Not valid when

preview is not enabled.
examine [width][height] List data values in the area of the size = width x height,

positioned by the mouse cursor.
rms [width][height] Calculate the rms (root mean square) value of the data in the

area of size width x height, positioned by the mouse cursor.
ivy [text string] Send the message [text string] on the ivy communication

bus.
keyword
[name][value][comment]

For the next exposure, save a fits header keyword given by
[name][value][comment]. Comments are optional.

batch [batchfile] Execute commands stored in the file [batchfile] sequentially.
[batchfile] needs to be a text file containing valid camera
and/or application commands. [batchfile] may contain a valid
path to the file, with respect to the current execution directory.

execute [program] Execute an external binary given by [program]. [program]
needs to specify a valid UNIX executable binary and may
contain a valid path to the file with respect to the current
execution directory. Command control is returned when the
program returns. Possible output is displayed on stdout.

run [program] Execute an external binary give by [program]. [program] needs
to specify a valid UNIX executable binary and may contain a
valid path to the file, with respect to the current execution
direction. Command control is returned immediately; thus this
command may be a source of stale processes in case of errors.
USE WITH CAUTION.

help Display help on application commands on console.
quit | q Quit application.
Table 8 Application commands

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 20 of 24

Command line options

CCD3COMM
A number of command line options are available when executing the ccd3comm
application.

Option Description
-n --noansi Turn off ansi codes.
-b [filename] --batch Execute commands in file [filename].
-d --daemon Release console and go to background.
-i [device index] --index Use CCD3 device [device index]

Index on the pci bus, try “lspci”, default = 0.
-a [camera index] --camera Use CCD3 camera [camera index]

Valid range = [1..8], default = 8.
-c [config file] --config User configuration file [config file].
-v [level] --verbose Set verbosity level.

Valid range = [0..4] or “silent”, “fatal”, “error”,
“normal” and “debug”

-V --version Display version information and exit.
-h --help Display command line help and exit.

Table 9 Command line options

CCD3DB
A number of command line options are available when executing the ccd3db application.
Option Description
-d --daemon Release console and go to background.
-c [config file] --config User configuration file [config file].
-v [level] --verbose Set verbosity level.

Valid range = [0..4] or “silent”, “fatal”, “error”,
“normal” and “debug”.

-V --version Display version information and exit.
-h --help Display command line help and exit.

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 21 of 24

Example batchfile
Example of a batch file creating 4 images suitable for noise calculations. This sequence
can be loaded from the application console by issuing the command “[filename]” on the
ccd3comm console, or in the shell by starting the application with the command
“ccd3comm –b [filename]”

@imod 0
@xsiz 2148
@ysiz 4102
@tsam 10
@time 5
file dmy.fits
sint
file bias1.fits
sint
file bias2.fits
sint
@imod 1
@time 300
file flat1.fits
sint
file flat2.fits
sint
q

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 22 of 24

Generating batch files in shell scripts
For exposure sequences iterating on one or more parameters and possible subsequent
post-processing, it is convenient to use a shell script for generating the batch file(s) and
performing processing.

The following listing shows an example on how to use a shell script to generate batch file
commands to iterate on exposure times from 100 milliseconds to 4 seconds and
clamp/sampling times from 20 to 360 clocks. Using this approach, it is possible to iterate
over as many parameters as desired and in any combination, e.g. in order to find local
maximum or minimums in some characteristic, say noise or linearity.

#!/bin/sh

TMPFILE="./tmpbatch"
OUTFILE="./data.txt"
CCD3COMM="/usr/local/bin/ccd3comm"
IDL="/usr/local/bin/idl"
IDL_SCRIPT="./tilegain.pro"
XBEG=1350
YBEG=3080
XSIZ=500
YSIZ=500

B1FILE=bias1.fits
B2FILE=bias2.fits
F1FILE=flat1.fits
F2FILE=flat2.fits

rm -f $OUTFILE

iterate 30x times on TIME
TIME_FROM=100
TIMETO=4100
TIME_INCREMENT=100

#iterate 34x times on TSAM
TSAM_FROM=20
TSAM_TO=360
TSAM_INCREMENT=10

#total measurements , 30x34 = 1020

TSAM=$TSAM_FROM

while [$TSAM -lt $TSAM_TO];
do
 echo @tsam $TSAM > $TMPFILE
 TIME=$TIME_FROM

 while [$TIME -lt $TIMETO];
 do
 echo "********** Doing tsam=$TSAM, time=$TIME **********"

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 23 of 24

 rm -f $B1FILE
 rm -f $B2FILE
 rm -f $F1FILE
 rm -f $F2FILE

 echo @xbeg $XBEG >> $TMPFILE
 echo @ybeg $YBEG >> $TMPFILE
 echo @xsiz $XSIZ >> $TMPFILE
 echo @ysiz $YSIZ >> $TMPFILE
 echo @imod 0 >> $TMPFILE

 echo @imod 0 >> $TMPFILE

 echo @time 5 >> $TMPFILE

 echo file $B1FILE >> $TMPFILE
 echo sint >> $TMPFILE

 echo file $B2FILE >> $TMPFILE
 echo sint >> $TMPFILE

 echo @imod 1 >> $TMPFILE
 echo @time $TIME >> $TMPFILE

 echo file $F1FILE >> $TMPFILE
 echo sint >> $TMPFILE

 echo file $F2FILE >> $TMPFILE
 echo sint >> $TMPFILE
 echo q >> $TMPFILE

 $CCD3COMM -b $TMPFILE

 echo $TSAM $TIME $(echo .run $IDL_SCRIPT | $IDL) >> $OUTFILE
 echo "********** Done tsam=$TSAM, time=$TIME **********"

 rm -f $TMPFILE
 let TIME=TIME+$TIME_INCREMENT
 done

 let TSAM=TSAM+$TSAM_INCREMENT
done

exit 0

University of Copenhagen ● Niels Bohr Institute ● Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

JJA/18-02-2011 Version 1.0 - Printed 19-02-2011 16:28:00 Page 24 of 24

List of tables
Table 1 Controller communication structure ..13
Table 2 Exposure control ...15
Table 3 Readout format ...16
Table 4 Readout timing..17
Table 5 Gain and offset..17
Table 6 Bias voltage ..17
Table 7 Miscellaneous ...18
Table 8 Application commands..19
Table 9 Command line options ..20

